Abstract

Systemic exposure to N-methyl-d-aspartate (NMDA) receptor antagonists can lead to psychosis and prefrontal cortex (PFC)-dependent behavioral impairments. Agonists of metabotropic glutamate 2/3 (mGlu2/3) receptors ameliorate the adverse behavioral effects of NMDA antagonists in humans and laboratory animals, and are being considered as a novel treatment for some symptoms of schizophrenia. Despite the compelling behavioral data, the cellular mechanisms by which potentiation of mGlu2/3 receptor function attenuates the effects of NMDA receptor hypofunction remain unclear. In freely moving rats, we recorded the response of medial PFC (prelimbic) single units to treatment with the NMDA antagonist MK801 and assessed the dose-dependent effects of pre- or posttreatment with the mGlu2/3 receptor agonist LY354740 on this response. NMDA receptor antagonist-induced behavioral stereotypy was measured during recording because it may relate to the psychotomimetic properties of this treatment and is dependent on the functional integrity of the PFC. In most PFC neurons, systemic administration of MK801 increased the spontaneous firing rate, decreased the variability of spike trains, and disrupted patterns of spontaneous bursts. Given alone, LY354740 (1, 3, and 10 mg/kg) decreased spontaneous activity of PFC neurons at the highest dose. Pre- or posttreatment with LY354740 blocked MK801-induced changes on firing rate, burst activity, and variability of spike activity. These physiological changes coincided with a reduction in MK801-induced behavioral stereotypy by LY354740. These data indicate that activation of mGlu2/3 receptors reduces the disruptive effects of NMDA receptor hypofunction on the spontaneous spike activity and bursting of PFC neurons. This mechanism may provide a physiological basis for reversal of NMDA antagonist-induced behaviors by mGlu2/3 agonists.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.