Abstract

Seven day exposure to a low concentration of lead acetate increases nitric oxide bioavailability suggesting a putative role of K+ channels affecting vascular reactivity. This could be an adaptive mechanism at the initial stages of toxicity from lead exposure due to oxidative stress. We evaluated whether lead alters the participation of K+ channels and Na+/K+-ATPase (NKA) on vascular function. Wistar rats were treated with lead (1st dose 4μg/100g, subsequent doses 0.05μg/100g, im, 7days) or vehicle. Lead treatment reduced the contractile response of aortic rings to phenylephrine (PHE) without changing the vasodilator response to acetylcholine (ACh) or sodium nitroprusside (SNP). Furthermore, this treatment increased basal O2− production, and apocynin (0.3μM), superoxide dismutase (150U/mL) and catalase (1000U/mL) reduced the response to PHE only in the treated group. Lead also increased aortic functional NKA activity evaluated by K+-induced relaxation curves. Ouabain (100μM) plus L-NAME (100μM), aminoguanidine (50μM) or tetraethylammonium (TEA, 2mM) reduced the K+-induced relaxation only in lead-treated rats. When aortic rings were precontracted with KCl (60mM/L) or preincubated with TEA (2mM), 4-aminopyridine (4-AP, 5mM), iberiotoxin (IbTX, 30nM), apamin (0.5μM) or charybdotoxin (0.1μM), the ACh-induced relaxation was more reduced in the lead-treated rats. Additionally, 4-AP and IbTX reduced the relaxation elicited by SNP more in the lead-treated rats. Results suggest that lead treatment promoted NKA and K+ channels activation and these effects might contribute to the preservation of aortic endothelial function against oxidative stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.