Abstract

A CRISPRa transcription activation system was used to upregulate insulin expression in HEK293T cells. To increase the delivery of the targeted CRISPR/dCas9a, magnetic chitosan nanoparticles, imprinted with a peptide from the Cas9 protein, were developed, characterized, and then bound to dCas9a that was complexed with a guide RNA (gRNA). The adsorption of dCas9 proteins conjugated with activators (SunTag, VPR, and p300) to the nanoparticles was monitored using both ELISA kits and Cas9 staining. Finally, the nanoparticles were used to deliver dCas9a that was complexed with a synthetic gRNA into HEK293T cells to activate their insulin gene expression. Delivery and gene expression were examined using quantitative real-time polymerase chain reaction (qRT-PCR) and staining of insulin. Finally, the long-term release of insulin and the cellular pathway related to stimulation by glucose were also investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.