Abstract

The nuclear protein high-mobility group box chromosomal protein 1 (HMGB1) was recently described to act as a pro-inflammatory cytokine and as a late mediator of severe sepsis and septic shock. The protein is released from monocytes in response to endotoxin and activates monocytes and endothelial cells through nuclear factor kappa B. We have previously demonstrated that the B-box of HMGB1 mediates a pro-inflammatory effect on endothelial cells including the upregulation of cell-adhesion molecules and release of interleukin (IL)-8 and granulocyte colony-stimulating factor. Here, we report that HMGB1 is released from human umbilical vein endothelial cells (HUVEC) in response to lipopolysaccharide (LPS) and tumour necrosis factor (TNF)-alpha. A nuclear relocation of HMGB1 to the cytoplasm was seen at 4 h. Subsequently, high amounts of HMGB1 could be seen in the supernatants from stimulated cells after 16 h. It was also observed that the pro-inflammatory activity of HMGB1 is sensitive to dexamethasone. Interestingly, the HMGB1-induced TNF-alpha release from monocytes could be inhibited by either the A-box of the protein or the p38 inhibitor CNI-1493, but neither had any inhibitory effects on the HMGB1-dependent upregulation of cell-adhesion molecules on HUVEC. Altogether, these results suggest that HUVEC may be an important source of HMGB1 secretion in response to systemic infection and that endothelial cells and monocytes may use different signalling pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.