Abstract
Aims of this controlled study were to determine the effects of activated human platelet-rich plasmas (PRPs) on early and mature bone formation in vivo, and to characterize the effect of PRP activation on growth factors release and endothelial cell division in vitro. PRPs were prepared from four volunteers with the platelet concentrate collector system (PCCS) system and activated with three concentrations of calcium and thrombin. Platelet-derived growth factor (PDGF)-BB, vascular endothelial growth factor (VEGF), transforming growth factor beta (TGF-beta) and interleukin-1beta (IL-1beta) levels released in supernatants were measured by ELISA, at time 0, 1h, 24h and 6 days following PRP activation. Mitogenic potential of PRP supernatants were tested on endothelial cells in vitro, and the effects of activated human PRPs on bone formation in vivo were measured in athymic rats by micro-CT analyses. Activation of PRPs with calcium and thrombin triggered an immediate release of VEGF, PDGF-BB and TGF-beta and a delayed release of IL-1beta in PRP supernatants. Higher endothelial cell division was observed with supernatants from activated PRPs than from non-activated PRPs. Positive correlations were observed between VEGF levels and endothelial cell division and bone formation. A negative correlation was also found between PDGF-BB concentration and bone formation. However, early and mature bone formations with activated PRPs did not significantly differ from the ones obtained in the control group. Activation of PRPs with calcium and thrombin regulates growth factors release and endothelial cell division in vitro. However, activated PRPs does not improve the early or mature bone formations in vivo in this athymic rat model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.