Abstract

AbstractTo directly determine whether the mechanism of activation of human plasminogen (HPg) by staphylokinase (Sak) required formation of an active complex of Sak and HPg, recombinant (r) variants of HPg were examined that allowed dissection of the steps involved in this activation. The rate of activation of wild-type (wt) r-HPg by equimolar levels of Sak was enhanced when small amounts of human plasmin (HPm) were included, suggesting that a Sak-HPm complex was a more effective plasminogen activator than a putative Sak-HPg complex. Incubation of equimolar Sak with a cleavage site resistant mutant of HPg (r-[R561 A]HPg) did not result in generation of amidolytic activity of the complex, in contrast to a similar experiment with streptokinase (SK) in place of Sak, where substantial amidolytic activity was generated. This result supplies evidence that an active complex of Sak and HPg does not form, as is the case with SK. Another mutant, r-[D646E]HPg, which, upon activation, would lead to a form of HPm defective in enzymatic activity, is also not converted to its two-chain form by Sak, but is converted to the inactive two-chain form by urokinase, a direct plasminogen activator, and by equimolar complexes of SK or Sak with wtr-HPm. This shows that the active site of HPm is the functional plasminogen activator entity in the Sak-HPm complex. These results show that the mechanism of activation of HPg by Sak proceeds in a distinctly different manner than the similar activation by SK. Although SK does not require the presence of HPm for this activation, a necessary condition for the activation by Sak is formation of a small amount of HPm generated via another activation pathway. These different mechanisms have significant implications in production of the fibrinolytic state by these two indirect bacterial plasminogen activators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call