Abstract
Activation of human plasma prekallikrein by a bacterial metalloendopeptidase, Pseudomonas aeruginosa elastase, was reported (Shibuya et al. (1991) Biochim. Biophys. Acta 1097, 23–27). Details of the activation process were presently studied. The activation accompanied limited proteolysis of a peptide bond inside of a disulfide bridge of prekallikrein molecule. Amino acid sequencing analysis of the newly generated amino-terminal revealed that the cleavage site was Arg 371-Ile 372 bond which is the scissile bond in the activation of prekallikrein with trypsin-type proteinases. A pentapeptide substrate, 2-aminobenzoyl-Ser-Thr-Ile-Val-4-nitrobenzylamide, which contained the amino acid sequence identical to that around the scissile bond of prekallikrein was synthesized. Pseudomonal elastase, indeed, hydrolyzed the substrate at Arg-Ile bond with the kinetic parameters of K m = 118 μM, k cat = 1.56/s and k cat/ K m = 1.33 · 10 4/s M. These results indicated that the Arg 371-Ile 372 bond was sensitive not only to trypsin-type serine proteinases, but also a bacterial metalloproteinase. Kinetic analysis of the prekallikrein activation by psuedomonal elastase, however, revealed that the activation rate was show, though the K m values was good enough to expect an occurence of this activation in vivo ( K m = 248 nM, k = 6.8 · 10 −4/s, and k cat/ K m = 2.7 · 10 3/s M. The activation rate of prekallikrein by pseudomonal elastase in Hageman factor deficient plasma was remarkably improved when the plasma was reconstituted with purified Hageman factor molecule. From the results, a biologuical significance of the proteinase cascade in the plasma kinin generation was also indicated. The present in vitro study might support the hypothesis that the Hageman factor/kallikrein-kinin system plays an important role in bacterial infection including the pseudomonal one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.