Abstract

NK cells are instrumental in innate immune responses, in particular for the early production of gamma interferon (IFN-gamma) and other cytokines necessary to control certain bacterial, parasitic, and viral infections. NK cell-mediated effector functions are controlled by a fine balance between distinct receptors mediating activating and inhibitory signals; however, little is known about activating receptors on NK cells and their corresponding ligands. Several studies have shown that commensal lactobacilli isolated from the human gastrointestinal tract activate human mononuclear cells and are potent inducers of IFN-gamma and monocyte-derived interleukin 12 (IL-12). NK cell activation was shown for Lactobacillus johnsonii La1. In this study the cellular mechanisms of in vitro NK cell activation by gram-positive bacteria were analyzed. Staphylococcus aureus- and L. johnsonii La1-mediated activation of CD3(-) CD16(+) CD56(+) human peripheral blood NK cells, including expression of the activation antigen CD69 and secretion of IFN-gamma, required cell contact-dependent costimulation by autologous monocytes. S. aureus- and L. johnsonii-preactivated monocytes retained their capacity to induce NK cell activation. In contrast, cytokine-primed monocytes completely failed to induce NK cell activation unless bacteria were present. This suggests that phagocytosis of bacteria provided additional coactivation signals on accessory cells that may differ from those induced by tumor necrosis factor and IFN-gamma. Blocking of costimulatory molecules by B7.1, B7.2, and IL-12 but not CD14 monoclonal antibodies inhibited S. aureus- and L. johnsonii-induced effector function of NK cells. Our data suggest an important role for accessory cell-derived signals in the process of NK cell activation by gram-positive bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.