Abstract

Activation of control, unprimed neutrophils with soluble immune complexes fails to generate a respiratory burst. However, if the cells are primed with either tumor necrosis factor-alpha or granulocyte-macrophage colony-stimulating factor prior to addition of soluble immune complexes, then a rapid and transient burst of reactive oxidant secretion is observed. In unprimed neutrophils the soluble immune complexes stimulate an intracellular Ca2+ transient that arises from the mobilization of intracellular Ca2+. However, in primed cells, an "extra" intracellular Ca2+ signal is observed that arises from Ca2+ influx. After removal of Fc gamma RIIIb by treatment with pronase or PI-PLC, the soluble immune complexes fail to activate a respiratory burst in unprimed neutrophils and the "extra" Ca2+ signal is not observed. These results indicate that during priming Fc gamma RIIIb becomes functionally activated and thence its ligation leads to stimulated Ca2+ influx and the generation of intracellular signals that lead to NADPH oxidase activation. Experiments using Fab/F(ab')2 fragments to specifically crosslink either Fc gamma RII or Fc gamma RIIIb and experiments with neutrophils from an individual with Fc gamma RIIIb gene deficiency confirm this important function for Fc gamma RIIIb in neutrophil activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.