Abstract

The mechanism of chronic mast cell activation in asthma is unclear. Monomeric immunoglobulin (Ig)E in the absence of allergen induces mediator release from rodent mast cells, indicating a possible role for IgE in the continued activation of mast cells within the asthmatic bronchial mucosa. In this study it was investigated whether monomeric IgE induces Ca2+ influx and mediator release from human lung mast cells (HLMC). Purified HLMC were cultured for 4 weeks and then exposed to monomeric human myeloma IgE. Ratiometric Ca2+ imaging was performed on single fura-2-loaded cells. Histamine release was measured by radioenzymatic assay; leukotriene C4 (LTC4) and interleukin (IL)-8 were measured by ELISA. At concentrations experienced in vivo, monomeric IgE induced dose-dependent histamine release, LTC4 production and IL-8 synthesis. This was associated with a rise in cytosolic free Ca2+. Enhanced histamine release was still evident 1 week after initial exposure to IgE suggesting that continued exposure maintains enhanced secretion. Monomeric immunoglobulin E alone activates cultured human lung mast cells initiating Ca2+ influx, degranulation, arachidonic acid metabolism and cytokine synthesis. These findings support the hypothesis that immunoglobulin E loading of mast cells within the asthmatic airway contributes to the disordered airway physiology of this disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call