Abstract

We established the HepG2-luciferase cells containing a luciferase reporter gene regulated by human HSPA1A promoter. The screening of heat shock and three typical environmental toxicants revealed differences in their capacities to activate HSPA1A promoter in HepG2-luciferase cells. After heat shock, a progressive time-dependent increase in relative luciferase activity was detected peaking at 8h of recovery. Benzo[a]pyrene, formaldehyde and sodium bisulfite induced significant time-dependent elevation of relative luciferase activity, which were positively correlated with MDA concentration, Olive tail moment and micronuclei frequency. The significant increase in relative luciferase activity was already evident after 4h of benzo[a]pyrene, 1h of formaldehyde and sodium bisulfite exposure, when no increases in cellular damage were detected by other toxicity tests. Therefore, the HepG2-luciferase cells are useful model for examining the overall cellular responses to oxidative stress and genotoxic damage, and provide a reporter system for rapid and sensitive screening of environmental pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call