Abstract

We previously showed that prejunctional histamine H3-receptors downregulate norepinephrine exocytosis, which is markedly enhanced in early myocardial ischemia. In the present study, we investigated whether H3-receptors modulate nonexocytotic norepinephrine release during protracted myocardial ischemia. In this setting, decreased pH(i) in sympathetic nerve endings sequentially leads to a compensatory activation of the Na+-H+ antiporter (NHE), accumulation of intracellular Na+, reversal of the neuronal uptake of norepinephrine, and thus carrier-mediated release of norepinephrine. Accordingly, norepinephrine overflow from isolated guinea pig hearts undergoing 20-minute global ischemia and 45-minute reperfusion was attenuated approximately 80% by desipramine (10 nmol/L) and 70% by 5-(N-ethyl-N-isopropyl)-amiloride (EIPA, 10 micromol/L), inhibitors of norepinephrine uptake and NHE, respectively. The H3-receptor agonist imetit (0.1 micromol/L) decreased carrier-mediated norepinephrine release by approximately 50%. This effect was blocked by the H3-receptor antagonist thioperamide (0.3 micromol/L), indicating that H-receptor activation inhibits carrier-mediated norepinephrine release. At lower concentrations, imetit (10 nmol/L) or EIPA (3 micromol/L) did not inhibit carrier-mediated norepinephrine release. However, a 25% inhibition occurred with imetit (10 nmol/L) and EIPA (3 micromol/L) combined. This synergism suggests an association between H-receptors and NHE. Conceivably, activation of H-receptors may lead to inhibition of NHE. In fact, alpha2-adrenoceptor activation, which is known to stimulate NHE, enhanced norepinephrine release, whereas alpha2-adrenoceptor blockade attenuated it. Furthermore, activation of adenosine A1-receptors markedly attenuated norepinephrine release, whereas their inhibition potentiated it. Because norepinephrine directly correlated with the severity of reperfusion arrhythmia and imetit reduced the incidence of ventricular fibrillation by 50%, our findings with H-receptor agonists may further the development of novel pharmacological means to reduce reperfusion arrhythmias in the clinical setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.