Abstract
The effects of 12-O-tetradecanoylphorbol 13-acetate (TPA), a potent activator of protein kinase C, on high-affinity Na(+)-dependent glutamate transport were investigated in primary cultures of neurons and glial cells from rat brain cortex. Incubation of glial cells with TPA led to concentration- and time-dependent increases in the glutamate transport that could be completely suppressed by the addition of the protein kinase C (PKC) inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine. The TPA effects could be mimicked by oleoylacetylglycerol and by the diacylglycerol kinase inhibitor R59022. The effects of TPA were potentiated by the Ca2+ ionophore A23187. Under the chosen experimental conditions TPA had no effect on glutamate transport in neurons. We conclude that PKC activates the sodium-dependent high-affinity glutamate transport in glial cells and that it has dissimilar effects on neurons and glial cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.