Abstract
Protein synthesis was drastically inhibited in HeLa cells incubated for 5 min at 42.5 degrees C, but it resumed after 20 min at a rate about 50% that of control cells. After 10 min of heat shock, the binding of Met-tRNAf to 40 S ribosomal subunits was greatly reduced and a polypeptide identified by immunoprecipitation with the alpha subunit of eukaryotic initiation factor-2 (eIF-2) was phosphorylated. Extracts prepared from control and heat-shocked cells were assayed for in vitro protein synthesis. Both extracts were active when supplemented with hemin, but the extract from heat-shocked cells had little initiation activity without this addition. A Mr 90,000 polypeptide and eIF-2 alpha were phosphorylated in this extract, but hemin or an antibody which inhibits the protein kinase designated heme-controlled repressor reduced this phosphorylation. These findings implicated heme-controlled repressor as the kinase at least in part responsible for eIF-2 alpha phosphorylation. Furthermore, the initial inhibition of protein synthesis and eIF-2 alpha phosphorylation after heat shock were reduced by adding hemin to intact HeLa cells. These cells synthesized heat-shock proteins with some delay relative to cells without added hemin. The binding of Met-tRNAf to 40 S ribosomal subunits was inhibited by about 50% in extracts prepared from cells heat-shocked for 40 min, and eIF-2 alpha phosphorylation was increased in these cells. These results suggest that heme-controlled repressor is activated in heat-shocked cells and that eIF-2 alpha phosphorylation limits mRNA translation even after partial recovery of protein synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.