Abstract

ABSTRACT Understanding maternal immune tolerance is crucial for the development of therapeutics for immunological pregnancy complications. Decidual regulatory T cells (Tregs) play a pivotal role in the maintenance of maternal immune tolerance. Using a murine allogeneic pregnancy model in the current study, we identified the up-regulation of gonadotropin-releasing hormone receptor (GnRHR) in decidual T cell subsets including CD4+ conventional T cells, CD8+ T cells, and CD4+Foxp3+ Tregs. Using a lentivirus-mediated GnRHR overexpression system and a GnRHR agonist, we found that GnRHR activation decreased the expression of Treg functional molecules such as IL10 (IL-10), IL-35 subunit EBI3 (Ebi3), IL2RA (CD25), TNFRSF18 (GITR), ICOS, and Treg master regulator FOXP3. The functional analysis indicated that GnRHR activation impairs the ability of Tregs to inhibit conventional T cell proliferation. We also revealed that GnRHR activation suppressed the mechanistic target of rapamycin (mTOR) signaling in GnRHR-overexpressing splenic Tregs (Wild type C57BL/6 J background) and decidual Tregs. MHY1485, a potent mTOR activator, effectively abolished the effect of the GnRHR agonist and promoted the immunosuppressive capability of Tregs. Furthermore, in an adoptive transfer model, Treg-specific GnRHR knockdown increased Foxp3 expression in decidual Tregs while decreasing the production of IFN-γ and IL-17 in decidual effector CD4+ T cells and reducing the production of IFN-γ in decidual effector CD8+ T cells. Taken together, the present study unveils a novel mechanism by which the immunosuppressive function of decidual Tregs is modulated, and deepens our understanding of maternal immune tolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call