Abstract

In anesthetized rats, iontophoresis of the gamma-aminobutyric acid (GABAB)-receptor agonist and antispastic drug baclofen inhibits the bulbospinal vasomotor neurons of the rostral ventrolateral medulla (RVLM). The present study was carried out to determine whether C1 adrenergic and other bulbospinal neurons of the RVLM have postsynaptic GABAB receptors. Retrogradely labeled RVLM bulbospinal neurons (n = 52) were recorded in 120-micron-thick slices from neonatal rat brain (3-10 days old). Most neurons (48/52) were tonically active (3 +/- 0.6 spikes/s). Twenty-six neurons were recovered histologically, and 18 of them were immunoreactive for tyrosine hydroxylase (TH). In current clamp, baclofen (0.3-10 microM) hyperpolarized RVLM bulbospinal cells in a dose-dependent manner (16 +/- 0.5 mV hyperpolarization by 3 microM baclofen; n = 19) and decreased input resistance by 40% (n = 10). In voltage clamp (1 microM tetrodotoxin present; holding potential: -40 to -60 mV), 3 microM baclofen induced an outward current of 21 +/- 2 pA (n = 29). This current exhibited inward rectification and reversed polarity close to the K+ equilibrium potential (external K+ from 2.5 to 10 mM). The current induced by baclofen was reduced 90% by 0.1-0.2 mM BaCl2 (n = 6) and was blocked reversibly by the selective GABAB-receptor antagonist CGP-55845A (0.5-1 microM; n = 6). All histologically verified TH-immunoreactive cells (n = 18) were sensitive to baclofen. In summary, RVLM bulbospinal neurons including C1 adrenergic cells possess GABAB receptors. Activation of these receptors increases an inwardly rectifying K+ conductance. This effect reduces the intrinsic firing frequency of RVLM vasomotor neurons "in vitro" and may contribute to the sympatholytic action of baclofen "in vivo."

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.