Abstract

Abnormal loss of components of the extracellular matrix (ECM) including type II collagen and aggrecan caused by proinflammatory cytokines such as tumor necrosis factor-α (TNF-α) is an important pathophysiological characteristic of osteoarthritis (OA). G-protein-coupled bile acid receptor, Gpbar1 (TGR5), is an important member of the bile acid receptor subclass of G Protein-Coupled Receptors (GPCRs). Little information regarding the effects of TGR5 in the pathological development of OA has been reported before. In the current study, we showed that TGR5 is expressed in human primary chondrocytes and human chondrosarcoma SW1353 cells. Interestingly, expression of TGR5 was reduced in response to TNF-α treatment in SW1353 cells. Our results indicate that activation of TGR5 using its specific agonist INT-777 reduced TNF-α-induced degradation of the articular ECM, including type II collagen and aggrecan, by inhibiting expression of matrix metalloproteinase-3 (MMP-3), MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs- 4 (ADAMTS-4) and ADAMTS-5. We also found that INT-777 treatment inhibited phosphorylation of p38 and activation of the IκB kinase/inhibitory κBα/nuclear factor- κB (IKK/IκBα/NF-κB) signaling pathway. Notably, knockdown of TGR5 abolished the protective effects of INT-777 against ECM degradation, suggesting the involvement of TGR5. Our findings implicate that TGR5 might be considered as a potential therapeutic target for the treatment of OA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call