Abstract

Using FM1-43 epifluorescence imaging and electron microscopy, we recently reported that glucagon-like peptide (GLP-1)-mediated cyclic adenosine monophosphate (cAMP) potentiation of insulin secretion markedly promotes the number of plasma membrane (PM) exocytic sites and insulin secretory granule (SG)-to-granule fusions underlying compound and sequential exocytosis. Here, we used FM1-43 imaging to dissect the distinct contributions of putative GLP-1/cAMP activated substrates--exchange protein directly activated by cAMP (EPAC) and protein kinase A (PKA)--in mediating these exocytic events. Like GLP-1, cAMP activation by forskolin increased the number of PM exocytic sites (2.3-fold), which were mainly of the robust-sustained (55.8%) and stepwise-multiphasic (37.7%) patterns corresponding to compound and sequential SG-SG exocytosis, respectively, with few monophasic hotspots (6.5%) corresponding to single-granule exocytosis. Direct activation of EPAC by 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cAMP also increased the number of exocytic sites, but which were mainly multiphasic (60%) and monophasic (40%) hotspots. Protein kinase A inhibition by H89 blocked forskolin-evoked robust-sustained hotspots, while retaining multiphasic (47%) and monophasic (53%) hotspots. Consistently, PKA activation (N6-benzoyladenosine-3',5'-cAMP) evoked only multiphasic (60%) and monophasic (40%) hotspots. These results suggested that PKA activation is required but alone is insufficient to promote compound SG-SG fusions. 8-(4-Chloro-phenylthio)-2'-O-methyladenosine-3',5'-cAMP plus N6-benzoyladenosine-3',5'-cAMP stimulation completely reconstituted the effects of forskolin, including increasing the number of exocytic sites, with a similar pattern of robust-sustained (42.6%) and stepwise (39.6%) hotspots and few monophasic (17.8%) hotspots. The EPAC and PKA modulate both distinct and common exocytic steps to potentiate insulin exocytosis where (a) EPAC activation mobilizes SGs to fuse at the PM, thereby increasing number of PM exocytic sites; and (b) PKA and EPAC activation synergistically modulate SG-SG fusions underlying compound and sequential exocytoses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.