Abstract

The aim of this study was to get insight into the pathway of the acetaldehyde formation from ethanol (the rate-limiting step in the production of 1,3-butadiene) on Cu-SBA-15 and Cu-MnSBA-15 mesoporous molecular sieves. Physicochemical properties of the catalysts were investigated by XRD, N2 ads/des, Uv-vis, XPS, EPR, pyridine adsorption combined with FTIR, 2-propanol decomposition and 2,5-hexanedione cyclization and dehydration test reactions. Ethanol dehydrogenation to acetaldehyde (without and with oxygen) was studied in a flow system using the FTIR technique. In particular, the effect of Lewis acid and basic (Lewis and BrØnsted) sites, and the oxygen presence in the gas reaction mixture with ethanol on the activity and selectivity of copper catalysts, was assessed and discussed. Two different reaction pathways have been proposed depending on the reaction temperature and the presence or absence of oxygen in the flow of the reagents (via ethoxy intermediate way at 593 K, in ethanol flow, or ethoxide intermediate way at 473 K in the presence of ethanol and oxygen in the reaction mixture).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.