Abstract
Different types of metals, including manganese (Mn), are constantly encountered in various environmental matrices due to natural and anthropogenic activities. They induce a sustained inflammatory response in various organs, which is considered to be an important priming event in the pathogenesis of several diseases. Mn-induced neuroinflammation and subsequent neurodegeneration are well recognized. However, emerging data suggest that occupationally and environmentally relevant levels may affect various organs, including the lungs. Therefore, the present study was carried out to investigate the effects of Mn (as Mn2+) exposure on the inflammatory response in human normal bronchial (BEAS-2B) and adenocarcinoma alveolar basal (A549) epithelial cells, as well as in murine macrophages (J774). Mn2+ exposure significantly induced mRNA and protein expression of various pro-inflammatory mediators (cytokines and chemokines) in all cells compared to corresponding vehicle controls. Furthermore, Mn2+ treatment also led to increased phosphorylation of extracellular-signal-regulated kinase (ERK)1/2 and nuclear factor-kappa B (NF-kB) p65 in both epithelial cells and macrophages. As expected, cells treated with inhibitors of ERK1/2 (PD98059) and NF-kB p65 (IMD0354) effectively mitigated the expression of various pro-inflammatory mediators induced by Mn2+, suggesting that ERK/NF-kB pathways have a critical role in the Mn2+-induced inflammatory response. Further, in vivo studies are required to confirm these in vitro findings to support clinical translation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.