Abstract

The epidermal growth factor receptor (EGFR), an N-glycosylated transmembrane protein, is the target of erlotinib, an orally bioavailable agent approved for treatment of patients with non-small cell lung cancer (NSCLC). In this study, we examined whether inhibition of EGFR N-glycosylation and stimulation of endoplasmic reticulum (ER) stress by tunicamycin enhances erlotinib-induced growth inhibition in NSCLC cell lines. We examined the effects of tunicamycin and erlotinib on cytotoxicity of erlotinib-sensitive and resistant NSCLC cell lines, as well its effects on apoptotic pathways and on EGFR activation and subcellular localization. A minimally cytotoxic concentration of tunicamycin (1 microM) resulted in approximatey 2.6-2.9 fold and approximatey 6.8-13.5 fold increase in erlotinib-induced antiproliferative effects in sensitive (H322 and H358) and resistant cell lines (A549 and H1650), respectively. We found that tunicamycin generated an aglycosylated form of 130 kDa EGFR. Tunicamycin additionally affected EGFR activation and subcellular localization. Interestingly, the combination of tunicamycin and erlotinib caused more inhibitory effect on EGFR phosphorylation than that of erlotinib alone. Moreover, the combination induced apoptosis in H1650 cells through induction of CHOP expression, activation of caspase-12 and caspase-3, cleavage of PARP and bak, and down-regulation of anti-apoptotic proteins bcl-xL and survivin. Overall, our data demonstrate that tunicamycin significantly enhances the susceptibility of lung cancer cells to erlotinib, particularly sensitizing resistant cell lines to erlotinib, and that such sensitization may be associated with activation of the ER stress pathway and with inhibition of EGFR N-glycosylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.