Abstract

During the early development of neocortical networks, many glutamatergic synapses lack AMPA receptors and are physiologically silent. We show in neocortical cultures that spontaneous synchronous network activity is able to convert silent synapses to active synapses by the incorporation of AMPA receptors into synaptic complexes throughout the network within a few minutes. To test the effect of synaptic activation on the connectivity of neuronal populations, we created separated neuronal networks that could innervate each other. We allowed outgrowing axons to invade the neighboring network either before or after the onset of synchronous network activity. In the first case, both subnetworks connected to each other and synchronized their activity, whereas in the second case, axonal connections failed to form and network activity did not synchronize between compartments. We conclude that early spontaneous synchronous network activity triggers a global AMPAfication of immature synapses, which in turn prevents later-arriving axons from forming afferent connections. This activity-dependent process may set the range of corticocortical connections during early network development before experience-dependent mechanisms begin elaborating the mature layout of the neocortical connections and modules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.