Abstract
Aberrant innate immune signaling has been identified as a potential key driver of the complex pathophysiology of myelodysplastic neoplasms (MDS). This study of a large, clinically and genetically well-characterized cohort of treatment-naïve MDS patients confirms intrinsic activation of inflammatory pathways in general mediated by caspase-1, interleukin (IL)-1β and IL-18 in low-risk (LR)-MDS bone marrow and reveals a previously unrecognized heterogeneity of inflammation between genetically defined LR-MDS subgroups. Principal component analysis resolved two LR-MDS phenotypes with low (cluster 1) and high (cluster 2) levels of IL1B gene expression, respectively. Cluster 1 contained 14/17 SF3B1-mutated cases, while cluster 2 contained 8/8 del(5q) cases. Targeted gene expression analysis of sorted cell populations showed that the majority of the inflammasome-related genes, including IL1B, were primarily expressed in the monocyte compartment, consistent with a dominant role in determining the inflammatory bone marrow environment. However, the highest levels of IL18 expression were found in hematopoietic stem and progenitor cells (HSPCs). The colony forming activity of healthy donor HSPCs exposed to monocytes from LR-MDS was increased by the IL-1β-neutralizing antibody canakinumab. This work reveals distinct inflammatory profiles in LR-MDS that are of likely relevance to the personalization of emerging anti-inflammatory therapies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.