Abstract

Glutathione (GSH) is an important cellular antioxidant and has a critical role in maintaining the balance of cellular redox. In this study, we investigated the GSH biosynthesis genes involved in the elevation of endogenous GSH levels using an irradiation system with an irradiation dose rate of 1.78 mGy/h, which was about 40,000 times less than the dose rates used in other studies. The results showed that GSH levels were significantly increased in the low-dose (0.02 and 0.2 Gy) irradiated group compared to those in the non-irradiated group, but enzymatic antioxidants such as superoxide dismutase and catalase were not induced at any doses tested. The elevation in GSH was accompanied by elevated expression of glutamate–cysteine ligase modifier subunit, but no changes were observed in the expression of glutamate–cysteine ligase catalytic subunit and thioredoxin in de novo GSH synthesis. In the case of genes involved in the GSH regeneration cycle, the expression of glutathione reductase was not changed after irradiation, whereas glutathione peroxidase was only increased in the 0.2 Gy irradiated group. Collectively, our results suggest that the de novo pathway, rather than the regeneration cycle, may be mainly switched on in response to stimulation with long-term low-dose radiation in the spleen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.