Abstract

BackgroundDuring their lifetime, conifer trees are exposed to numerous herbivorous insects. To protect themselves against pests, trees have developed a broad repertoire of protective mechanisms. Many of the plant’s defence reactions are activated upon an insect attack, and the underlying regulatory mechanisms are not entirely understood yet, in particular in conifer trees. Here, we present the results of our studies on the transcriptional response and the volatile compounds production of Scots pine (Pinus sylvestris) upon the large pine weevil (Hylobius abietis) feeding.ResultsTranscriptional response of Scots pine to the weevil attack was investigated using a novel customised 36.4 K Pinus taeda microarray. The weevil feeding caused large-scale changes in the pine transcriptome. In total, 774 genes were significantly up-regulated more than 4-fold (p ≤ 0.05), whereas 64 genes were significantly down-regulated more than 4-fold. Among the up-regulated genes, we could identify genes involved in signal perception, signalling pathways, transcriptional regulation, plant hormone homeostasis, secondary metabolism and defence responses. The weevil feeding on stem bark of pine significantly increased the total emission of volatile organic compounds from the undamaged stem bark area. The emission levels of monoterpenes and sesquiterpenes were also increased. Interestingly, we could not observe any correlation between the increased production of the terpenoid compounds and expression levels of the terpene synthase-encoding genes.ConclusionsThe obtained data provide an important insight into the transcriptional response of conifer trees to insect herbivory and illustrate the massive changes in the host transcriptome upon insect attacks. Moreover, many of the induced pathways are common between conifers and angiosperms. The presented results are the first ones obtained by the use of a microarray platform with an extended coverage of pine transcriptome (36.4 K cDNA elements). The platform will further facilitate the identification of resistance markers with the direct relevance for conifer tree breeding.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1546-9) contains supplementary material, which is available to authorized users.

Highlights

  • During their lifetime, conifer trees are exposed to numerous herbivorous insects

  • The coverage of the microarray platform used in our study (36.4 K cDNA elements) significantly exceeds the coverage of the platforms used for spruce previously (9.7 K and 21.8 K, respectively)

  • In this work, we present the results of the gas chromatography–mass spectrometry (GC-MS) analysis of induced pine-emitted volatiles and the analysis of the pine transcriptional response to the insect herbivory

Read more

Summary

Introduction

Conifer trees are exposed to numerous herbivorous insects. To protect themselves against pests, trees have developed a broad repertoire of protective mechanisms. Scots pine (Pinus sylvestris L.) is one of the most widespread forest tree species in the Northern boreal zone of Eurasia, where its distribution area ranges from the Atlantic coast of Europe in the west to the Pacific coast near the Sea of Okhotsk in the east [1]. It is cultivated on a large scale and has a major economic importance in the timber, pulp and paper industry. Together with adults of earlier generation, they feed on plant bark in August – September before moving below ground to hibernate in October [3]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call