Abstract

Estrogen and dopamine are major opposing regulators of the endocrine functions of pituitary lactotrophs. Dopamine inhibits estrogen-induced changes in the synthesis and secretion of prolactin, and lactotroph proliferation. We studied the mechanism of the inhibitory effects of dopaminergic stimulation on estrogen-induced functional changes of rat lactotrophs in primary culture. The dopaminergic agonist, bromocriptine (BC), suppressed 17β-estradiol-stimulated lactotroph proliferation, prolactin promoter activity, and mRNA expression of some estrogen-responsive genes. In lactotroph-enriched pituitary cells, BC treatment inhibited the estrogen response element (ERE) DNA sequence-mediated estrogen receptor (ER) transcriptional activity. Using a lactotroph-specific ERE transcriptional assay, we found that BC inhibition of the ERE-mediated ER transcriptional activity partly involved D2 dopamine receptor-mediated, pertussis toxin-sensitive G protein-coupled, cAMP/protein kinase A-dependent signaling. BC treatment had no effect on the cellular concentration of ERα or its phosphorylation status at Ser-118. Similar transcriptional inhibition by BC was also found in GH4ZR7 cells, a D2 dopamine receptor-expressing somatomammotrophic cell line. These results suggest that activation of the D2 dopamine receptors inhibits estrogen-dependent lactotroph functions in part via attenuation of ERE-mediated ER transactivation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call