Abstract

Parkinson’s disease (PD) is a neurodegenerative disease showing uncontrollable motor symptoms that are primarily caused by the progressive loss of dopaminergic neurons in the brain. Currently no treatment exists to prevent PD progression. Therefore, discovery of new neuroprotective strategies still has great potential to benefit PD patients. A handful of studies show that activation of cAMP pathways is neuroprotective against PD progression. However, the neuroprotective role of this signaling cascade specifically in DA neurons has not been explored. In this study, fruit fly Drosophila melanogaster was used because of its sophisticated and powerful genetic approaches, especially with related to cAMP signaling pathway. We have investigated molecular mechanisms of neuroprotection in a fly larval model of PD by administering an environmental PD toxin rotenone. Increased cAMP signaling in the dunce mutant fly carrying defects in phosphodiesterase (PDE) gene, is neuroprotective against rotenone-induced locomotion deficits. Furthermore, the neuroprotective role of cAMP signaling specifically in DA neurons has been studied as it has not been explored. By using transgenic flies expressing designer receptors exclusively activated by designer drugs (DREADDs), we have shown that an increase of cAMP levels in DA neurons rescues rotenone-induced locomotion deficits. We also showed that this neuroprotection is mediated by activation of Gαs and PKA-C1 subunits. The results provide novel findings that expand our knowledge of neuroprotective mechanisms in DA neurons affecting PD progression, which could contribute to the development of new therapeutic treatments against PD. An important future study will explore downstream targets of cAMP-PKA signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call