Abstract

Mitochondria have been implicated in apoptosis, however, the precise mechanisms whereby mitochondria exert their effect are not clear. To gain further insights, we generated a panel of cells from ML-1a cells that were rendered respiration deficient by ethidium bromide treatment. Two respiration-deficient clones were subsequently reconstituted by fusion with platelets. Respiration-deficient clones were resistant to TNF-induced apoptosis, whereas ML-1a and reconstituted clones were sensitive. In contrast, inhibition of proliferation and induction of differentiation by TNF were still observed in respiration deficient clones, suggesting a selective requirement of respiration in TNF-induced apoptosis. Furthermore the apoptosis machinery is not completely altered in respiration-deficient cells because they underwent apoptosis after staurosporine treatment. Next, we showed that apoptosis induced by TNF and staurosporine were blocked by z-DEVD-CH2F, an inhibitor of CPP32-like cysteine protease, suggesting the involvement of CPP32-like protease in both apoptosis signaling pathways. Interestingly, TNF activated CPP32-like protease in the parental and reconstituted clones but not in respiration-deficient clones, and staurosporine in all clones. Thus, the apoptosis signaling block in respiration-deficient clones is located at a step before CPP32-like protease activation, which can be bypassed by staurosporine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.