Abstract

Constitutive activity of the recombinant human 5-hydroxytryptamine(1B) (5-HT(1B)) receptor (RC code 2.1.5HT.01.B) was investigated by mutagenesis of the BBXXB motif (in which B represents a basic residue and X a non-basic residue) located in the C-terminal portion of the third intracellular loop. In contrast with wild-type 5-HT(1B) receptors, three receptor mutants (Thr(313)-->Lys, Thr(313)-->Arg and Thr(313)-->Gln) increased their agonist-independent guanosine 5'-[gamma-[(35)S]thio]triphosphate binding response by 26-41%. This activity represented approx. 30% of the maximal response induced by 5-HT and could be reversed by the inverse agonists methiothepin and 3-(3-dimethylaminopropyl)-4-hydroxy-N-(4-pyridin-4-yl phenyl)-benzenamide (GR 55562). Enhanced agonist-independent and agonist-dependent 5-HT(1B) receptor activation was provided by co-expression of a pertussis toxin-resistant rat G(o)alpha Cys(351)-->Ile protein. The wild-type 5-HT(1B) receptor displayed a doubling in basal activity, whereas a spectrum of enhanced basal activities (313-571%) was observed with a series of diverse amino acid substitutions (isoleucine, glycine, asparagine, alanine, lysine, phenylalanine, glutamine and arginine) at the 5-HT(1B) receptor position 313 in the presence of pertussis toxin (100 ng/ml). Consequently, the constitutive 5-HT(1B) receptor activity can be modulated by the mutation of Thr(313), and displays a graded range between 11% and 59% of maximal 5-HT(1B) receptor activation by 5-HT. No clear pattern is apparent in the framework of traditionally cited amino acid characteristics (i.e. residue size, charge or hydrophobicity) to explain the observed constitutive activities. The various amino acid substitutions that yielded enhanced activity are unlikely to make similar intramolecular interactions within the 5-HT(1B) receptor. It is hypothesized that the positioning of the junction between the third intracellular loop and transmembrane domain VI is altered by mutation of Thr(313) in the BBXXB motif and thereby unmasks G(alpha)-protein interaction points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.