Abstract

Reactions involving C–F, Si–F, and S–F bond cleavage with N-heterocyclic carbenes and isoelectronic species are reviewed. Most examples involve activation of aromatic C–F bond via an SNAr pathway and nucleophilic substitution of fluorine in electron-deficient olefins. The mechanism of the C–F bond activation depends on the reaction partners and the reaction can proceed via addition–elimination, oxidative addition (concerted or stepwise) or metathesis. The adducts formed upon substitution find applications in organic synthesis, as ligands and as stable radical precursors, but in most cases, their full potential remains unexplored.1 Introduction1.1 The C–F Bond1.2 C–F Bond Activation: A Short Summary1.3 C–F Bond Activation: A Special Case of SNAr1.4 N-Heterocyclic Carbenes (NHCs)1.5 The Purpose of this Article2 C–F bond Activation in Acyl Fluorides3 Activation of Vinylic C–F Bonds4 Activation of Aromatic C–F Bonds5 X–F Bond Activation (X = S or Si)6 C–F Bond Activation by Main Group Compounds Isoelectronic with NHCs7 Conclusions and Outlook

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call