Abstract

Within the complex environment of an implanted cardiovascular device comprised of dynamic flow and foreign materials, phagocytic neutrophils may be ineffective in combating infection due to cellular responses to shear stress. This may be explained, in part, by our recent reports of apoptosis of biomaterial-adherent leukocytes induced through exposure to shear stress. Here we utilize a rotating disk system to generate physiologically relevant shear stress levels (0-18 dynes/cm(2)) at the surface of a polyetherurethane urea (PEUU) and investigate neutrophil intracellular pathways involved in shear-induced apoptosis. In situ detection of activated caspases, the enzymatic mediators of the apoptosis cascade, showed qualitatively that these proteases participate in shear-induced apoptosis and are activated in a shear-dependent manner. The involvement of caspase 3 was confirmed through immunoprecipitation and immunoblotting of extracted neutrophil proteins. Comparative studies with neutrophils adherent under static conditions demonstrated time-dependent activation of caspases in TNF-alpha/cycloheximide-induced apoptosis, for which caspase-3 also was implicated. These findings are the first steps toward elucidation of the mechanisms behind the inappropriate induction of apoptosis by adhesion to biomaterials, which may contribute to the development and persistence of device-related infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call