Abstract
The poor survival of cells in ischemic sites diminishes the therapeutic efficacy of stem cell therapy. Previously we and others have reported that Cannabinoid receptor type II (CB2) is protective during heart ischemic injury for its anti-oxidative activity. However, whether CB2 activation could improve the survival and therapeutic efficacy of stem cells in ischemic myocardium and the underlying mechanisms remain elusive. Here, we showed evidence that CB2 agonist AM1241 treatment could improve the functional survival of adipose-derived mesenchymal stem cells (AD-MSCs) in vitro as well as in vivo. Moreover, AD-MSCs adjuvant with AM1241 improved cardiac function, and inhibited cardiac oxidative stress, apoptosis and fibrosis. To unveil possible mechanisms, AD-MSCs were exposed to hydrogen peroxide/serum deprivation to simulate the ischemic environment in myocardium. Results delineated that AM1241 blocked the apoptosis, oxidative damage and promoted the paracrine effects of AD-MSCs. Mechanistically, AM1241 activated signal transducers and activators of transcription 3 (Stat3) through the phosphorylation of Akt and ERK1/2. Moreover, the administration of AM630, LY294002, U0126 and AG490 (inhibitors for CB2, Akt, ERK1/2 and Stat3, respectively) could abolish the beneficial actions of AM1241. Our result support the promise of CB2 activation as an effective strategy to optimize stem cell-based therapy possibly through Stat3 activation.
Highlights
Coronary heart disease (CHD) is the leading cause of morbidity and mortality worldwide
Our previous studies have demonstrated that bioluminescence imaging was a reliable tool to monitor the fate of adipose-derived mesenchymal stem cells (AD-MSCs) transplanted into infarcted myocardium
On postoperative day (POD) 14 and 28, ejection fraction (EF) and fraction shortening (FS) experienced a significant improvement in AD-MSCs, CB2R and AD-MSCs+CB2R group compared with PBS group, with the best parameters in AD-MSCs+CB2R group (Figure 2B, 2C; P < 0.05)
Summary
Coronary heart disease (CHD) is the leading cause of morbidity and mortality worldwide. In terms of current therapeutic options for CHD, stem cell-based therapies hold some great promises for heart regeneration [1]. The therapeutic efficacy has been hindered by the poor survival of engrafted cells. Myocardial oxidative stress, and other pro-apoptotic factors severely restrain the therapeutic effects of MSCs on cardiac repair [3]. To this end, it is reasonable to search for novel strategy to promote donor cell survival for the purpose of achieving the optimal efficacy of stem cell-based therapy for CHD
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.