Abstract

AbstractThe factors controlling the activation of σ‐bonds promoted by hidden Frustrated Lewis Pairs have been computationally explored using quantum chemical tools. To this end, the influence of both the nature of the group 13 element acting as Lewis acid as well as the cooperative action of the Lewis antagonists on the bond activation was quantitatively analyzed by means of the activation strain model of reactivity in combination with the energy decomposition analysis method. It is found that while the activation of the polar EX−H bonds (E15=group 15 element; E16=group 16 element) is feasible, the analogous processes involving non‐polar E14−H bonds (CH4, SiH4 or H2) proceed with much higher barriers. Nevertheless, these processes, and in particular the dihydrogen activation, can be realizable (i. e. proceeding with a feasible barrier) through rational design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.