Abstract

Drug discovery pipelines for the “neglected diseases” are now heavily populated with nitroheterocyclic compounds. Recently, the bicyclic nitro-compounds (R)-PA-824, DNDI-VL-2098 and delamanid have been identified as potential candidates for the treatment of visceral leishmaniasis. Using a combination of quantitative proteomics and whole genome sequencing of susceptible and drug-resistant parasites we identified a putative NAD(P)H oxidase as the activating nitroreductase (NTR2). Whole genome sequencing revealed that deletion of a single cytosine in the gene for NTR2 that is likely to result in the expression of a non-functional truncated protein. Susceptibility of leishmania was restored by reintroduction of the wild-type gene into the resistant line, which was accompanied by the ability to metabolise these compounds. Overexpression of NTR2 in wild-type parasites rendered cells hyper-sensitive to bicyclic nitro-compounds, but only marginally to the monocyclic nitro-drugs, nifurtimox and fexinidazole sulfone, known to be activated by a mitochondrial oxygen-insensitive nitroreductase (NTR1). Conversely, a double knockout NTR2 null cell line was completely resistant to bicyclic nitro-compounds and only marginally resistant to nifurtimox. Sensitivity was fully restored on expression of NTR2 in the null background. Thus, NTR2 is necessary and sufficient for activation of these bicyclic nitro-drugs. Recombinant NTR2 was capable of reducing bicyclic nitro-compounds in the same rank order as drug sensitivity in vitro. These findings may aid the future development of better, novel anti-leishmanial drugs. Moreover, the discovery of anti-leishmanial nitro-drugs with independent modes of activation and independent mechanisms of resistance alleviates many of the concerns over the continued development of these compound series.

Highlights

  • New, safer and more effective treatments are required for visceral leishmaniasis (VL), a disease endemic in parts of Asia, Africa and South America

  • We recently discovered that delamanid–an oral nitro-drug used for the treatment of tuberculosis–shows promise for the treatment of leishmaniasis with potential to provide a much needed alternative to the current unsatisfactory anti-leishmanial drugs

  • Using a combination of biochemical and genetic approaches we have discovered a novel nitroreductase (NTR2) that is necessary and sufficient for the anti-leishmanial activity of delamanid and related experimental drugs containing a nitro-group attached to two fused rings

Read more

Summary

Author Summary

Visceral leishmaniasis (kala-azar) is a serious vector borne disease afflicting people, in parts of Asia, Africa and Latin America. Using a combination of biochemical and genetic approaches we have discovered a novel nitroreductase (NTR2) that is necessary and sufficient for the anti-leishmanial activity of delamanid and related experimental drugs containing a nitro-group attached to two fused rings. This enzyme is responsible for activating bicyclic nitro-compounds to form toxic products that kill the parasite. The previously identified nitroreductase (NTR1), which activates monocyclic drugs, is not involved in this process. This knowledge can be applied to develop novel treatments for this disease

Introduction
Results
Discussion
Findings
Ethics statement
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call