Abstract
The ability of the mussel postmitochondrial fraction (S9) to activate benzo[ a]pyrene (BaP) and 2-aminoanthracene (2AA) to mutagenic metabolites towards Salmonella typhimurium strain TA98 was tested. The mechanisms involved in this activation were investigated and mussel cytochrome P-450-dependent monooxygenases and its NADPH cytochrome c reductase were found to contribute to the activation of BaP. This activation was improved by treating the mussel with 4,5,4′,5′-tetrachlorobiphenyl (TCB) (a 3-methylcholanthrene-type inducer of cytochrome P-450-dependent monooxygenase in marine fish) and was inhibited by α-naphthoflavone (ANF), a cytochrome P-450 inhibitor. However, both BaP activation and cytchrome P-450-related metabolic activities are much weaker in mussels than in vertebrates. Mussel S9 activates aromatic amines more effectively than BaP. Pretreatment of mussels with TCB or addition of ANF in the incubation medium has no effect on 2AA activation. As suggested by Kurelec (1985), aromatic amine metabolism may be supported by a flavoprotein mixed-function amine oxidase which is NADPH-dependent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.