Abstract

AimsCadmium (Cd) is a prevalent environmental contaminant that incurs deleterious health effects, including testicular impairment. Sitagliptin, a selective dipeptidyl peptidase-4 (DPP-4) inhibitor, has demonstrated marked cardio-, hepato-, and reno-protective actions, however, its impact on Cd-triggered testicular dysfunction has not been formerly investigated. Hence, the present study aimed to explore the probable beneficial impact of sitagliptin against Cd-evoked testicular impairment which may add to its potential clinical utility. The underlying mechanisms pertaining to the balance between testicular autophagy and apoptosis were explored, including the AMPK/mTOR and Nrf2/HO-1 pathways. Materials and methodsThe testicular tissues were examined using histopathology, immunohistochemistry, Western blotting, and ELISA. Sitagliptin (10 mg/kg/day, by gavage) was administered for 4 consecutive weeks. Key findingsSitagliptin attenuated the testicular impairment via improvement of the relative testicular weight, sperm count/motility, sperm abnormalities, and serum testosterone. Additionally, sitagliptin counteracted Cd-induced histologic aberrations/disrupted spermatogenesis. Interestingly, sitagliptin augmented the defective autophagy as demonstrated by upregulating Beclin 1 protein expression and lowering p62 SQSTM1 protein accumulation. These effects were mediated via the activation of testicular AMPK/mTOR pathway as proven by increasing p-AMPK (Ser485, Ser491)/total AMPK and diminishing p-mTOR (Ser2448)/total mTOR protein expression. Additionally, sitagliptin suppressed the testicular apoptotic events via downregulating Bax and upregulating Bcl-2 protein expression. In tandem, sitagliptin suppressed the oxidative stress through lowering lipid peroxides and activating Nrf2/HO-1 pathway via upregulating the protein expression of Nrf2, and the downstream effectors HO-1 and GPx. SignificanceSitagliptin attenuated Cd-induced testicular injury via boosting the autophagy/apoptosis ratio through activation of AMPK/mTOR and Nrf2/HO-1 pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call