Abstract

Ataxia-telangiectasia mutated (ATM) kinase regulates diverse cellular DNA damage responses, including genome surveillance, cell growth, and gene expression. While the role of histone acetylation/deacetylation in gene expression is well established, little is known as to whether this modification can activate an ATM-dependent signal pathway, and whether this modification can thereby be implicated in an ATM-mediated DNA damage response. Formation of H2AXgamma foci was examined in HeLa and U(2)OS cells following treatment with a histone deacetylase inhibitor, Trichostatin A (TSA). We determine an ATM-dependency of the TSA-induced DNA damage signal pathway using isogenic A-T (ATM(-)) and control (ATM(+)) cells. We monitored the phosphorylation of ATM, an ATM-downstream effector kinase, Chk2, and H2AXgamma to detect the activation of the ATM-dependent DNA damage signal pathway. Exposure of cells to TSA results in the formation of H2AXgamma foci in HeLa and U(2)OS cells. The TSA-induced formation of H2AXgamma foci occurs in an ATM-dependent manner. TSA induces phosphorylation of serine 1981 of ATM, accumulation of phosphorylated H2AX and Chk2, and formation of H2AX foci, in a manner analogous to genotoxic DNA damage. In this work, we show that TSA induces a DNA damage signaling pathway in an ATM-dependent manner. These results suggest that ATM can respond to altered histone acetylation induced by the histone deacetylase inhibitor, TSA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.