Abstract
Recent data indicate the brain angiotensin-converting enzyme/ANG II/AT1 receptor axis enhances emotional stress responses. In this study, we investigated whether its counterregulatory axis, the angiotensin-converting enzyme 2 (ACE2)/ANG-(1-7)/Mas axis, attenuate the cardiovascular responses to acute emotional stress. In conscious male Wistar rats, the tachycardia induced by acute stress (air jet 10 l/min) was attenuated by intravenous injection of ANG-(1-7) [Δ heart rate (HR): saline 136 ± 22 vs. ANG-(1-7) 61 ± 25 beats/min; P < 0.05]. Peripheral injection of the ACE2 activator compound, XNT, abolished the tachycardia induced by acute stress. We found a similar effect after intracerebroventricular injections of either ANG-(1-7) or XNT. Under urethane anesthesia, the tachycardia evoked by the beta-adrenergic agonist was markedly reduced by ANG-(1-7) [ΔHR: saline 100 ± 16 vs. ANG-(1-7) 18 ± 15 beats/min; P < 0.05]. The increase in renal sympathetic nerve activity (RSNA) evoked by isoproterenol was also abolished after the treatment with ANG-(1-7) [ΔRSNA: saline 39% vs. ANG-(1-7) -23%; P < 0.05]. The tachycardia evoked by disinhibition of dorsomedial hypothalamus neurons, a key nucleus for the cardiovascular response to emotional stress, was reduced by ∼45% after intravenous injection of ANG-(1-7). In cardiomyocyte, the incubation with ANG-(1-7) (1 μM) markedly attenuated the increases in beating rate induced by isoproterenol. Our data show that activation of the ACE2/ANG-(1-7)/Mas axis attenuates stress-induced tachycardia. This effect might be either via the central nervous system reducing anxiety level and/or interfering with the positive chronotropy mediated by activation of cardiac β adrenergic receptors. Therefore, ANG-(1-7) might contribute to reduce the sympathetic load to the heart during situations of emotional stress, reducing the cardiovascular risk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.