Abstract

With the objective of identifying new coordination modes of ambiphilic ligands, we have investigated the bidentate Sb/P ligands (o-(Ph2 P)C6 H4 )SbCl2 (LCl ) and (o-(Ph2 P)C6 H4 )SbPh2 (LPh ). Reaction of these ligands with (tht)AuCl affords the monoligated species LCl AuCl (1) and LPh AuCl (2), respectively, in which the antimony centers are only weakly engaged with the coordinated gold atom. Treatment of 1 with PPh3 induces an intramolecular transfer of a chloride ligand from gold to antimony to form the zwitterionic species o-(Cl3 Sb)C6 H4 (Ph2 P)Au(PPh3 ) (3). Natural bond orbital (NBO) calculations show that the antimony and gold centers are involved in weak Sb→Au and Au→Sb interactions, the latter reflecting the Lewis acidity of the pendent antimony group. Finally, we demonstrate that the ability of the antimony center in 1 to abstract a gold-bound chloride in the presence of a Lewis basic substrate may be utilized to activate the gold center for the electrophilic cycloisomerization of propargylic amides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.