Abstract

The Buddleja officinalis Maxim. flower is used in traditional Chinese and Korean medicine to treat inflammation, vascular diseases, headache, and stroke, as well as enhance liver function. This research investigated the effects of B. officinalis Maxim. flower extract (BFE) on hepatotoxicity. The cytoprotective effects and mechanism of BFE against severe mitochondrial dysfunction and H2O2 production in hepatotoxicity induced by coadministration of arachidonic acid (AA) and iron were observed in the HepG2 cell line. In addition, we performed blood biochemical, histopathological, and histomorphometric analyses of mice with carbon tetrachloride- (CCl4-) induced acute liver damage. BFE inhibited the AA + iron-mediated hepatotoxicity of HepG2 cells. Moreover, it inhibited mitochondrial dysfunction, H2O2 production, and glutathione depletion mediated by AA + iron in the same cells. Meanwhile, the cytoprotective effects of BFE against oxidative stress were associated with the activation of AMP-activated protein kinase (AMPK). In particular, based on the histopathological observations, BFE (30 and 100 mg/kg) showed clear hepatoprotective effects against CCl4-induced acute hepatic damage. Furthermore, it inhibited 4-hydroxynonenal and nitrotyrosine immunoreactivity in hepatocytes. These results provide evidence that BFE has beneficial hepatoprotective effects against hepatic damage via the activation of AMPK pathway. Accordingly, BFE may have therapeutic potential for diverse liver disorders.

Highlights

  • The flower buds of Buddleja officinalis Maxim. are used as a folk remedy in traditional Oriental medicine

  • We examined the protective effects of B. officinalis Maxim. flower extract (BFE) against arachidonic acid (AA) + ironinduced hepatotoxicity using the MTT assay (Figure 2(a))

  • Our results showed that BFE inhibited the AA + ironmediated hepatotoxicity of HepG2 cells

Read more

Summary

Introduction

The flower buds of Buddleja officinalis Maxim. are used as a folk remedy in traditional Oriental medicine. B. officinalis is a flowering shrub in the family Scrophulariaceae that is widely distributed in America, Africa, and Asia. It is used in China and Korea to treat inflammation, vascular diseases, conjunctivitis, headache, and stroke, as well as enhance liver function [1,2,3]. Oxidative stress induces cell damage and is a major driver of the progression of many human disorders [8, 9]. High levels of reactive oxygen species (ROS) can alter membrane phospholipids [10], while fatty acid oxidation can damage cell signaling. AA and iron (AA + iron) synergistically produce more ROS and cause mitochondrial dysfunction and cell death [12, 13]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call