Abstract
In cystinosis, renal proximal tubule (RPT) function is compromised, due to mutations in ctns, which encodes for the transporter cystinosin, which removes cystine from lysosomes. Altered RPT function in cystinosis has been attributed to decreased ATP, as well as increased apoptosis. In this report, the role of AMPK was examined. AMPK was activated in primary rabbit RPT cells with a cystinosin knockdown, using cystinosin siRNA. The activation of AMPK was associated with a 50% decrease in ATP and a 1.7‐fold increase in the ADP/ATP level. Cisplatin‐induced apoptosis also increased in primary RPT cells with a cystinosin knockdown. The role of AMPK in the increased sensitivity to cisplatin was examined. The increased sensitivity to cisplatin was prevented in primary RPT cells with a cystinosin knockdown by the AMPK inhibitor Compound C. The effect of siRNAs against AMPKα1 and AMPKα2 was also studied. The siRNAs knocked down AMPKα, and prevented AMPKα activation by 5‐aminoimidazole‐4‐carboxamide‐1‐β‐d‐ribofuranoside (AICAR). The siRNAs against AMPKα1 and AMPKα2 also prevented the increased sensitivity to cisplatin in the primary RPT cells with a cystinosin knockdown. These results suggest that signaling through AMPK plays a role in the enhanced apoptosis in the RPT in cystinosis. Funded by the Cystinosis Research Foundation to MLT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.