Abstract
We have observed that pretreating Amberlyst-70 with a C9 ketone improves, up to five times, the rate of alkene oligomerization. Physical characterization of Amberlyst-70 reveals minimal changes to the particle dimensions upon exposure to 5-nonanone. Diffuse reflectance infrared spectroscopy indicates an interaction between the ketone and the acid sites within the catalyst. While the total number of acid sites is similar before and after treatment with nonanone, microcalorimetric studies of butene adsorption and temperature programmed desorption studies of butene desorption reveal that both adsorption and desorption of butene occur more rapidly in the catalyst treated with 5-nonanone, indicating that pretreatment of the catalyst with the ketone decreases the barrier for butene transport by 5–6 kJ/mol. The peak temperature for TPD spectra of butene desorption are observed to shift from 360 K for nonanone-treated Amberlyst-70 to 376 K in the case of untreated sample. The catalytic effect of the treatment with nonanone decreases slowly with time-on-stream, but remains after 200 h on stream (with the rate still being a factor of 2 higher than for the untreated sample); however, catalytic activity can be recovered upon additional treatment with ketone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.