Abstract
The activation of alternative respiration with an internal electron acceptor during anaerobic glucose utilization in E. coli strains with impaired fermentation ability has been studied. It was found out that respiration processes utilizing pyruvic acid as an endogenous electron acceptor can markedly contribute to the maintenance of the anaerobic redox balance in E. coli strains deficient in mixed acid fermentation pathways. The sequential inactivation of the pathways of anaerobic dissimilation of pyruvate and impairment of the functionality of the reductive branch of the tricarboxylic acid cycle led to an increase in the contribution (from 11 to 54%) of the respiratory formation of lactic acid and alanine to the biosynthesis of the reduced products of anaerobic glucose utilization by the strains. Analysis of the enantiomeric composition of the lactic acid and alanine secreted by the strains demonstrated that D-lactate dehydrogenase (Dld), L-lactate dehydrogenase (LctD), and D-alanine dehydrogenase (DadA) participated in the biosynthesis of the respective compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.