Abstract

Intermedin (IMD) is a novel member of the calcitonin/calcitonin gene-related peptide family. We investigated the cardioprotective mechanism of IMD(1-53) in the in vivo rat model of myocardial ischemia/reperfusion (I/R) injury and in vitro primary neonatal cardiomyocyte model of hypoxia/reoxygenation (H/R). Myocardial infarct size was measured by 2,3,5-triphenyl tetrazolium chloride staining. Cardiomyocyte viability was determined by trypan blue staining, cell injury by lactate dehydrogenase (LDH) leakage, and cardiomyocyte apoptosis by terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling assay, Hoechst staining, gel electrophoresis and caspase 3 activity. The translocation of mitochondrial cytochrome c of myocardia and expression of apoptosis-related factors Bcl-2 and Bax, phosphorylated Akt and phosphorylated GSK-3beta were determined by western blot analysis. IMD(1-53) (20 nmol/kg) limited the myocardial infarct size in rats with I/R; the infarct size was decreased by 54%, the apoptotic index by 30%, and caspase 3 activity by 32%; and the translocation of cytochrome c from mitochondria to cytosol was attenuated. IMD(1-53) increased the mRNA and protein expression of Bcl-2 and ratio of Bcl-2 to Bax by 81 and 261%, respectively. IMD(1-53) (1 x 10(-7) mol/L) inhibited the H/R effect in cardiomyocytes by reducing cell death by 43% and LDH leakage by 16%; diminishing cellular apoptosis; decreasing caspase 3 activity by 50%; and increasing the phosphorylated Akt and GSK-3beta by 41 and 90%, respectively. The cytoprotection of IMD(1-53) was abolished with LY294002, a PI3K inhibitor. In conclusion, IMD(1-53) exerts cardioprotective effect against myocardial I/R injury through the activation of the Akt/GSK-3beta signaling pathway to inhibit mitochondria-mediated myocardial apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.