Abstract

Ischemia exerts a negative impact on mitochondrial function, which ultimately results in neuronal damage via alterations in gene transcription and protein expression. Long non- coding RNAs (LncRNAs) play pivotal roles in the regulation of target protein expression and gene transcription. In the present study, we observed the effect of an unclassical LncRNA AK005401on ischemia/reperfusion (I/R) ischemia-mediated hippocampal injury and investigated the regulatory role of fibroblast growth factor 21 (FGF21) and Yin Yang 1 (YY1). C57Black/6 mice were subjected to I/R using the bilateral common carotid clip reperfusion method, and AK005401 siRNA oligos were administered via intracerebroventricular injection. HT22 cells were used to establish a model of oxygen-glucose deprivation/reoxygenation (OGD/R). We observed pathological morphology and mitochondrial structure. Neuronal apoptosis was evident. Cell activity, cell respiration, FGF21, YY1, and antioxidant capacity were evaluated. I/R or OGD/R significantly increased the expressions of AK005401and YY1 and decreased FGF21expression, which further attenuated the activation of PI3K/Akt, promoted reactive oxygen species (ROS) generation, and then caused mitochondria dysfunction and cell apoptosis, which were reversed by AK005401 siRNA oligos and were aggravated by overexpression of AK005401 and YY1. We conclude that AK005401/YY1/FGF21 signaling pathway has an important role in I/R-mediated hippocampal injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.