Abstract
High glucose plays a vital role in apoptosis in H9C2 cells. However, the exact molecular mechanism remains unclear. In this study, we aimed to evaluate the cardio-protective role of A2b receptor in high glucose-induced cardiomyocyte apoptosis via PI3K/Akt pathway. Adenosine A2b receptor agonist (Bay506583), antagonist (MRS1754), and Akt inhibitor (LY294002) were applied respectively to H9C2 cells before exposed to high glucose for 12h. Apoptosis of H9C2 cells was determined by TUNEL assay and the apoptosis rate by flow cytometry. The protein level of adenosine A2b receptor, p-Akt, total Akt, cleaved capase-3, cleaved capase-9, bax, and bcl-2 was measured by western blotting. The results demonstrated that apoptosis of H9C2 cardiomyocytes triggered by high-glucose treatment was time-dependent. The protein level of A2b receptor and activated Akt was both decreased in cardiomyocyte with high-glucose treatment. Moreover, we found that high glucose-induced apoptosis in H9C2 cells could be attenuated by administration of adenosine A2b receptor agonist Bay606583. This effect could be reversed by Akt inhibitor LY294002. In conclusion, activation of A2b receptor could prevent high glucose-induced apoptosis of H9C2 cells in vitro to a certain extent by activating PI3K/Akt signaling. In conclusion, these results suggested that activation of A2b receptor could be a novel therapeutic approach to high glucose-induced cardiomyocyte injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.