Abstract

The reaction mechanism of uranium atom with acetonitrile molecule has been systematically studied on the quintet and triplet spin-state potential energy surfaces (PESs) at B3LYP level of density functional theory. Reaction site prediction and bonding evolution were analyzed using different methods. Crossing seams and possible spin inversion processes between different PESs are discussed by means of spin–orbit coupling (SOC) calculations. The results show that there are three crossing points in the reaction, which appear in the process of capturing hydrogen atom. Larger SOC constant (1545.80 cm−1) and intersystem crossing (ISC) probability ( = 0.72) between quintet and triplet indicate that the effective ISC would occur in the vicinity of the minimum energy crossing points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.