Abstract
A Phytophthora megasperma f.sp. glycinea cell wall glucan preparation was previously shown to protect tobacco plants against viral infection. Eleven plant defense-related genes were assayed for elevated mRNA accumulation levels in response to glucan treatment of tobacco plants. The expression of only one of these genes, a glycine-rich protein (GRP) gene, was induced by glucan application. Elevated GRP gene mRNA levels could be detected within 15 min of glucan treatment and reached maximum levels at 4 h post-treatment followed by a slow decline to 8 h. The maximum induction of the GRP gene was approximately ninefold above H2O-treated control plants. Northern blot analysis showed that a single mRNA species of 1.4 kb was responding to the glucan treatment. GRP genes occur in tobacco as members of a multigene family, but only one specific GRP gene was induced by the glucan treatment. A genomic copy of this responding GRP gene was cloned and sequenced. This tobacco GRP gene is homologous to the petunia ptGRP1 gene and the French bean GRP1.8-gene, but is not closely related to the French bean GRP1.0 gene. GRP gene expression has previously been associated with disease resistance in plants, but it remains to be determined whether beta-glucan activation of the tobacco GRP gene results in the observed resistance to virus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Plant journal : for cell and molecular biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.