Abstract

A beneficial gut Bacteroides-folate-liver pathway regulating lipid metabolism is demonstrated. Oral administration of a Ganoderma meroterpene derivative (GMD) ameliorates nonalcoholic hepatic steatosis in the liver of fa/fa rats by reducing endotoxemia, enhancing lipid oxidation, decreasing de novo lipogenesis, and suppressing lipid export from the liver. An altered gut microbiota with an increase of butyrate and folate plays a causative role in the effects of GMD. The commensal bacteria Bacteroides xylanisolvens, Bacteroides thetaiotaomicron, Bacteroides dorei, and Bacteroides uniformis, which are enriched by GMD, are major contributors to the increased gut folate. Administration of live B.xylanisolvens reduces hepatic steatosis and enhances the folate-mediated signaling pathways in mice. Knockout of the folate biosynthetic folp gene in B.xylanisolvens blocks its folate production and beneficial effects. This work confirms the therapeutic potential of GMD and B.xylanisolvens in alleviating nonalcoholic hepatic steatosis and provides evidence for benefits of the gut Bacteroides-folate-liver pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.