Abstract

Rhythm generation by the gastric motor network in the stomatogastric ganglion (STG) of the lobster Homarus gammarus is controlled by modulatory projection neurons from rostral commissural ganglia (CoGs); blocking action potential conduction in these inputs to the STG of a stomatogastric nervous system in vitro rapidly renders the gastric network silent. However, exposure of the CoGs to low Ca2+ saline to block chemical synapses activates a spontaneously silent gastric network or enhances an ongoing gastric rhythm. A similar permissive effect was observed when picrotoxin was also superfused on these ganglia. We conclude that in the CoGs continuous synaptic inhibition is exerted on modulatory projection neuron(s) and that release from this inhibition allows strong activation of the gastric network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.